83 research outputs found

    Long-term U.S transportation electricity use considering the effect of autonomous-vehicles: Estimates & policy observations

    Get PDF
    In this paper, we model three layers of transportation disruption – first electrification, then autonomy, and finally sharing and pooling – in order to project transportation electricity demand and greenhouse gas emissions in the United States to 2050. Using an expanded kaya identity framework, we model vehicle stock, energy intensity, and vehicle miles traveled, progressively considering the effects of each of these three disruptions. We find that electricity use from light duty vehicle transport will likely be in the 570–1140 TWh range, 13–26%, respectively, of total electricity demand in 2050. Depending on the pace at which the electric sector decarbonizes, this increase in electric demand could correspond to a decrease in LDV greenhouse gas emissions of up to 80%. In the near term, rapid and complete transport electrification with a carbon-free grid should remain the cornerstones of transport decarbonization policy. However, long-term policy should also aim to mitigate autonomous vehicles’ potential to increase driving mileage, urban and suburban sprawl, and traffic congestion while incentivizing potential energy efficiency improvements through both better system management and the lightweighting of an accident-free vehicle fleet

    Toward Developing Models to Study the Disease, Ecology, and Evolution of the Eye in Mollusca*

    Full text link

    Financial Impacts of Net-Metered Distributed PV on a Prototypical Western Utility’s Shareholders and Ratepayers

    No full text
    Distributed solar photovoltaic (DPV) under net-energy metering with volumetric retail electricity pricing has raised concerns among utilities and regulators about adverse financial impacts for shareholders and ratepayers. Using a pro forma financial model, we estimate the financial impacts of different DPV deployment levels on a prototypical Western U.S. investor-owned utility under a varied set of operating conditions that would be expected to affect the value of DPV. Our results show that the financial impacts on shareholders and ratepayers increase as the level of DPV deployment increases, though the magnitude is small even at high DPV penetration levels. Even rather dramatic changes in DPV value result in modest changes to shareholder and ratepayer impacts, but the impacts on the former are greater than the latter (in percentage terms). The range of financial impacts are driven by differences in the amount of incremental capital investment that is deferred, as well as the amount of incremental distribution operating expenses that are incurred. While many of the impacts appear relatively small (on a percentage basis), they demonstrate how the magnitude of impacts depend critically on utility physical, financial, and operating characteristics
    • 

    corecore